Και... τσουπ! Να τος κι ο εκκεντροφόρος!
Οι πιο εξοικειωμένοι με το πώς δουλεύει ένα τετράχρονο μοτέρ πήραν ήδη χαμπάρι τι σήμαινε η τελευταία πρόταση που εξηγούσε το τμήμα C του σχήματος 2: όσο πιο νωρίς ανοίγει η βαλβίδα εξαγωγής, τόσο περισσότερη ενέργεια απελευθερώνει από τον θάλαμο καύσης προς το σύστημα εξαγωγής, κάνοντας το "βαγόνι" των καυσαερίων να κινηθεί γρηγορότερα προς την άκρη της εξάτμισης! Κρατήστε το αυτό, είναι από τις βασικές εξηγήσεις του πώς τα χαρακτηριστικά του εκκεντροφόρου ταυτίζονται με τα μήκη των σωλήνων ενός χταποδιού και τα λοιπά...
Πότε τα κύματα πρέπει να... "φάνε πόρτα"!
Η αδράνεια της στήλης των καυσαερίων είναι ο παίκτης - κλειδί στην υπόθεση. Κάθε φορά που ανοίγει η βαλβίδα εξαγωγής, η στήλη των καυσαερίων αποκτά ταχύτητα, καθώς η πίεση του κυλίνδρου εκτονώνεται και η δυναμική ενέργεια των καυσαερίων μετατρέπεται σε κινητική. Το κύμα των καυσαερίων ταξιδεύει προς τα δεξιά και αυτό μας βολεύει, γιατί αν όλα πάνε καλά, θα μας βοηθήσει να αδειάσουμε τον κύλινδρο όταν το πιστόνι βρεθεί στο ΑΝΣ. Πότε θα πάνε όλα καλά? Τα κύμα καυσαερίων είναι συνταξιδιώτης με το κύμα ήχου, που έχει ακόμη και δεκαπλάσια ταχύτητα από το κύμα καυσαερίων. Αυτό σημαίνει ότι όσο το πιστόνι ανεβαίνει προς το ΑΝΣ, το κύμα του ήχου θα χτυπήσει κάμποσες φορές την πόρτα του θαλάμου καύσης, για να την ξανακάνει προς τα δεξιά και να κυνηγήσει το κύμα των καυσαερίων. Οσο τα δυο κύματα κινούνται προς την ίδια κατεύθυνση (και εμείς θέλουμε να κινούνται μαζί προς τα δεξιά, όσο είναι ανοιχτή η βαλβίδα εξαγωγής), η ενέργεια του ενός "συνεργάζεται" με την ενέργεια του άλλου, και έτσι η πίεση πίσω από τα δυο κύματα (δηλαδή προς τα αριστερά), μειώνεται κι άλλο, καθώς τα δυο κύματα σπρώχνουν από κοινού τα καυσαέρια προς την δεξιά μεριά. Οταν όμως ταξιδεύουν προς αντίθετες κατευθύνσεις, τότε το μεν κύμα πίεσης σπρώχνει τα καυσαέρια προς τα δεξιά, το δε κύμα ήχου τα σπρώχνει προς τα αριστερά. Οταν ο ήχος προσπεράσει τον κυρίως παλμό καυσαερίων, κινούμενος προς τη βαλβίδα, αρχίζει να κάνει διπλή ζημιά: αφενός αυξάνει την πίεση μπροστά από τη βαλβίδα, αναιρώντας το ευεργέτημα της χαμηλής πίεσης που είχε δημιουργήσει ο κυρίως παλμός καυσαερίων όσο απομακρυνόταν από τη βαλβίδα. Αφετέρου, αν προλάβει ο ηχητικός παλμός να πετύχει τη βαλβίδα ανοιχτή, θα καταφέρει να σπρώξει πίσω στο θάλαμο καύσης κάμποσα καυσαέρια. Αυτό κι αν είναι πρόβλημα, αφού καταλήγουμε όχι μόνο να μην αδειάζουμε τελείως τον κύλινδρο από τα καυσαέρια αλλά να αυξάνουμε και την ποσότητά τους, εμποδίζοντας αντίστοιχα και την είσοδο φρέσκου καυσίμου μίγματος.
Η μια πτυχή της λύσης έχει να κάνει με την αδράνεια των καυσαερίων. Οσο μεγαλύτερη είναι η ταχύτητά τους προς τα δεξιά, τόσο περισσότερο αντιστέκονται στο ηχητικό κύμα που επιστρέφει προς τη βαλβίδα και θέλει να τα παρασύρει προς τα αριστερά. Εδώ κολλάει και το backpressure που εξετάσαμε τον προηγούμενο μήνα: όσο περισσότερο είναι το backpressure, τόσο μειώνει την ταχύτητα και την αδράνεια των καυσαερίων, οπότε τόσο πιο επιρρεπές καθιστά το σύστημά μας στην αναστροφή ροής λόγω μη ιδανικών κυματικών συνθηκών στο σύστημα εξάτμισης. Η άλλη πτυχή της λύσης, ωστόσο, έχει να κάνει με το ίδιο το μήκος του σωλήνα: εάν είναι αρκετά μακρύς, τότε η βαλβίδα εξαγωγής θα έχει προλάβει να κλείσει πριν το κύμα ήχου επιστρέψει σ' αυτήν για τελευταία φορά. Και εδώ είναι που θα αρχίσουμε να μιλάμε για τις πολλαπλές εξαγωγής, και τον συντονισμό.
Λίγα λόγια για τον συντονισμό
Από τα παραπάνω, αρχίζουμε να καταλαβαίνουμε σιγά σιγά τι είναι ο περίφημος συντονισμός της εξάτμισης. Ενα σύστημα εξάτμισης θεωρείται ευνοϊκά συντονισμένο όταν, σε συγκεκριμένες rpm, επιτυγχάνει την πληρέστερη δυνατή απομάκρυνση καυσαερίων από το θάλαμο καύσης. Η παράμετρος "rpm" είναι βασική, γιατί από αυτήν εξαρτάται η "φόρα" που θα πάρει το καυσαέριο καθώς βγαίνει από τη βαλβίδα, και η ταχύτητα που θα διατηρήσει καθώς ταξιδεύει προς την άκρη της εξάτμισης. Αντίστοιχα, οι rpm επηρεάζουν το πόσο γρήγορα θα κλείσει η βαλβίδα, και το αν το επιστρεφόμενο κύμα ήχου θα την προλάβει ανοιχτή ή κλειστή.
Δεν είναι τα πάντα μονοκύλινδρα
Ακριβώς για αυτό, εδώ και πολλές δεκαετίες οι σχεδιαστές κινητήρων συνειδητοποίησαν πως τα καυσαέρια ενός κυλίνδρου μπορούν κάλλιστα να χρησιμοποιηθούν προς όφελος κάποιου άλλου, και συγκεκριμένα του επόμενου κατά σειρά ανάφλεξης. Από τη στιγμή, μάλιστα, που ελάχιστα πολυκύλινδρα μοτέρ για χρήση αυτοκινήτου έχουν εντελώς ανεξάρτητους σωλήνες εξαγωγής για κάθε κύλινδρο, και μιλάμε πάντα για "φυσιολογικά" αυτοκίνητα και όχι για Hot Rods ή Dragsters, η διερεύνηση του πώς θα καταφέρουμε να παίξουμε με τους παλμούς προς όφελος της καλύτερης δυνατής πλήρωσης είναι μονόδρομος. Εξάλλου, δεν είναι τυχαίο ότι ακόμη και οι κινητήρες F1 χρησιμοποιούν εδώ και δεκαετίας "χταπόδια" και όχι μεμονωμένους σωλήνες για κάθε κύλινδρο. Αρα, με σωστή μελέτη, σίγουρα μπορεί κανείς να βγει κερδισμένος.
Τι είναι ένα "χταπόδι"?
Η πολλαπλή εξαγωγής είναι ένα συνονθύλευμα σωλήνων που ξεκινάνε από κάθε κύλινδρο (πρωτεύοντες σωλήνες) και καταλήγουν σε μια ή περισσότερες ενώσεις (συλλέκτες), όπου τα καυσαέρια του κάθε σωλήνα συναντιούνται μεταξύ τους και μετά συνεχίζουν τη διαδρομή τους σε έναν ή περισσότερους δευτερεύοντες σωλήνες.
Τα χαρακτηριστικά μεγέθη ενός χταποδιού είναι τα διαμετρήματα και μήκη των πρωτευόντων και δευτερευόντων σωλήνων, καθώς και η διάταξη συμβολής των σωλήνων στον ή στους συλλέκτες. Τα διαμετρήματα έχουν να κάνουν κυρίως με τον όγκο καυσαερίων που καλείται να διαχειριστεί το χταπόδι. Η διάμετρος των πρωτευόντων σωλήνων πρέπει να επιτρέπει τη ροή των καυσαερίων του κάθε κυλίνδρου χωρίς να παρουσιάζει ιδιαίτερη αντίσταση, και η διάμετρος των δευτερευόντων πρέπει να πληροί τις ίδιες συνθήκες για τον όγκο των καυσαερίων που αντιστοιχεί στον αριθμό κυλίνδρων που "πέφτουν" στον ίδιο συλλέκτη.
Πώς ο συλλέκτης "μοιράζει" τις πιέσεις
Ο συλλέκτης είναι το σημείο επικοινωνίας των ανεξάρτητων πρωτευόντων σωλήνων, και η διάταξη που επιτρέπει την παλμική αλληλεπίδραση των κυλίνδρων μεταξύ τους. Ο παλμός καυσαερίων που κατεβαίνει από τον πρωτεύοντα σωλήνα πέφτει μέσα στον συλλέκτη και μετά καλείται να συνεχίσει την πορεία του προς τον δευτερεύοντα. Καθώς ταξιδεύει στον δευτερεύοντα, η χαμηλή πίεση που ακολουθεί το κύμα πίεσης του παλμού εξαπλώνεται και μέσα στον συλλέκτη, και από εκεί στους υπόλοιπους σωλήνες που επικοινωνούν με αυτόν.
Συντονίζοντας το χταπόδι
Ο συντονισμός του χταποδιού είναι πιο περίπλοκος από αυτόν ενός απλού σωλήνα για κάθε κύλινδρο, γιατί πρέπει να ικανοποιηθούν οι εξής συνθήκες:
1. Τα μήκη των πρωτευόντων σωλήνων πρέπει να εξασφαλίσουν πως, όταν μπει ένας παλμός καυσαερίων μέσα στον συλλέκτη και μεταφέρει πίεση στους υπόλοιπους κυλίνδρους, η απόσταση βαλβίδας εξαγωγής - συλλέκτη θα είναι τέτοια ώστε η πίεση να μην προλάβει να πετύχει κάποια βαλβίδα ανοιχτή.
2. Μόλις ο παλμός καυσαερίων του ενός κυλίνδρου φύγει από τον πρωτεύοντα σωλήνα, θέλουμε η χαμηλή πίεση που τον ακολουθεί να συνεχίσει να παρασύρει καυσαέρια όχι μόνο από τον κύλινδρο που μόλις ξεφύσηξε, αλλά και από τους σωλήνες των κυλίνδρων που περιμένουν με τη σειρά τους να ανοίξουν τις βαλβίδες εξαγωγής.
3. Επειδή τα δυο παραπάνω είναι ασυμβίβαστα από μόνα τους, η επιλογή των κυλίνδρων που θα επικοινωνούν με τον εκάστοτε συλλέκτη πρέπει να είναι τέτοια, ώστε στη φάση που αναπόφευκτα θα έχουμε κάποιον παλμό πίεσης να ταξιδεύει προς κάποια βαλβίδα, η βαλβίδα αυτή θα είναι ερμητικά κλειστή.
Το πράγμα περιπλέκεται
Γιατί πλέον θα αρχίσουμε να μιλάμε για διατάξεις και "πλέξιμο" χταποδιών, υπολογισμούς μηκών και τόσα άλλα ενδιαφέροντα. Επειδή όμως χρειάζεστε καθαρό μυαλό και, προπάντων, να έχετε κατανοήσει πολύ καλά τα όσα έχουμε ήδη πει, σας αφήνω να φτιάξετε τον επόμενο Frappe και να το ρίξετε στην επανάληψη.
![]()
![]()
Πηγή:PowerMagazine